ua nt - p h / 98 03 08 2 v 1 2 9 M ar 1 99 8 Geometry of the Hilbert space and the Quantum Zeno Effect
نویسنده
چکیده
We show that the quadratic short time behaviour of transition probability is a natural consequence of the inner product of the Hilbert space of the quantum system. We provide a relation between the survival probability and the underlying geometric structure such as the Fubini-Study metric defined on the projective Hilbert space of the quantum system. This predicts the quantum Zeno effect even for systems described by non-linear and non-unitary evolution equations, within the collapse mechanism of the wavefunction during measurement process.
منابع مشابه
ar X iv : q ua nt - p h / 99 03 01 5 v 2 2 0 M ar 1 99 9 Disentanglement of pure bipartite quantum states by local cloning
We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement. 1 email: [email protected]
متن کاملua nt - p h / 98 01 03 7 v 2 6 J un 1 99 8 Experimental realization of a quantum al - gorithm
X iv :q ua nt -p h/ 98 01 03 7v 2 6 J un 1 99 8 Experimental realization of a quantum algorithm Isaac L. Chuang, Lieven M.K. Vandersypen, Xinlan Zhou, Debbie W. Leung, and Seth Lloyd 4 1 IBM Almaden Research Center K10/D1, San Jose, CA 95120, 2 Solid State Electronics Laboratory, Stanford University, Stanford, CA 94305 3 Edward L. Ginzton Laboratory, Stanford University, Stanford, CA 94305 4 MI...
متن کاملua nt - p h / 98 03 05 9 v 2 2 9 M ar 1 99 8 Casimir Effect - The Classical Limit
The temperature dependence of the Casimir effect for the radiation field confined between two conducting plates is analysed. The Casimir energy is shown to decline exponentially with temperature while the Casimir entropy which is defined in the text is shown to approach a limit which depends only on the geometry of the constraining plates. The results are discussed in terms of the relation betw...
متن کاملar X iv : q ua nt - p h / 96 03 01 2 v 1 8 M ar 1 99 6 A Model Of The Integer Quantum Hall Effect
We discuss a model for the integer quantum Hall effect which is based on a Schroedinger-Chern-Simons-action functional for a non-interacting system of electrons in an electromagnetic field on a mutiply connected manifold. In this model the integer values of the Hall conductivity arises in view of the quanti-zation of the Chern-Simons-action functional for electromagnetic potential.
متن کاملar X iv : q ua nt - p h / 99 03 01 5 v 3 2 9 A pr 1 99 9 Disentanglement of pure bipartite quantum states by local cloning
We discuss disentanglement of pure bipartite quantum states within the framework of the schemes developed for entanglement splitting and broadcasting of entanglement. 1 email: [email protected]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998